add chapter sorting mechanism
This commit is contained in:
parent
a1a8d694e2
commit
592da6cad6
7 changed files with 34 additions and 4 deletions
|
|
@ -1,10 +1,11 @@
|
||||||
+++
|
+++
|
||||||
title = "Deep Learning for Trajectory"
|
title = "Deep Learning for Trajectory"
|
||||||
sort_by = "date"
|
sort_by = "none"
|
||||||
paginate_by = 10
|
paginate_by = 10
|
||||||
|
|
||||||
[extra]
|
[extra]
|
||||||
abbr = "DL4traj"
|
abbr = "DL4traj"
|
||||||
|
use_chapter_sort = true
|
||||||
+++
|
+++
|
||||||
|
|
||||||
Deep learning approaches for analysis and utilization of spatiotemporal trajectories.
|
Deep learning approaches for analysis and utilization of spatiotemporal trajectories.
|
||||||
|
|
|
||||||
|
|
@ -2,6 +2,9 @@
|
||||||
title = "End-to-end Learning of Trajectories"
|
title = "End-to-end Learning of Trajectories"
|
||||||
date = 2026-02-02
|
date = 2026-02-02
|
||||||
description = ""
|
description = ""
|
||||||
|
|
||||||
|
[extra]
|
||||||
|
chapter = "2"
|
||||||
+++
|
+++
|
||||||
|
|
||||||
End-to-end learning means training a model to perform a task from input to output, supervising only on how the output aligns with the task's ground truth.
|
End-to-end learning means training a model to perform a task from input to output, supervising only on how the output aligns with the task's ground truth.
|
||||||
|
|
|
||||||
|
|
@ -2,6 +2,9 @@
|
||||||
title = "Trajectory Generation"
|
title = "Trajectory Generation"
|
||||||
date = 2026-02-04
|
date = 2026-02-04
|
||||||
description = ""
|
description = ""
|
||||||
|
|
||||||
|
[extra]
|
||||||
|
chapter = "4"
|
||||||
+++
|
+++
|
||||||
|
|
||||||
Trajectory generation, or trajectory synthesis, aims to generate trajectories that are not actually recorded in the available trajectory data, but are still realistic and follow a target distribution.
|
Trajectory generation, or trajectory synthesis, aims to generate trajectories that are not actually recorded in the available trajectory data, but are still realistic and follow a target distribution.
|
||||||
|
|
|
||||||
|
|
@ -2,6 +2,9 @@
|
||||||
title = "Introduction to Deep Learning for Trajectories"
|
title = "Introduction to Deep Learning for Trajectories"
|
||||||
date = 2026-02-01
|
date = 2026-02-01
|
||||||
description = ""
|
description = ""
|
||||||
|
|
||||||
|
[extra]
|
||||||
|
chapter = "1"
|
||||||
+++
|
+++
|
||||||
|
|
||||||
A spatiotemporal trajectory is a sequence, with each item being a timestamped location. It records the movement of an object or a human through time and space.
|
A spatiotemporal trajectory is a sequence, with each item being a timestamped location. It records the movement of an object or a human through time and space.
|
||||||
|
|
|
||||||
|
|
@ -2,6 +2,9 @@
|
||||||
title = "Self-supervised Learning of Trajectories"
|
title = "Self-supervised Learning of Trajectories"
|
||||||
date = 2026-02-03
|
date = 2026-02-03
|
||||||
description = ""
|
description = ""
|
||||||
|
|
||||||
|
[extra]
|
||||||
|
chapter = "3"
|
||||||
+++
|
+++
|
||||||
|
|
||||||
Self-supervised learning means training a model with unlabeled data, using supervisory signals extracted from the data itself. It usually does not set the model to perform a certain task, but aims to learn task-agnostic information in the data.
|
Self-supervised learning means training a model with unlabeled data, using supervisory signals extracted from the data itself. It usually does not set the model to perform a certain task, but aims to learn task-agnostic information in the data.
|
||||||
|
|
|
||||||
|
|
@ -138,9 +138,16 @@ ul, ol {
|
||||||
gap: 1rem;
|
gap: 1rem;
|
||||||
margin-bottom: 0.5rem;
|
margin-bottom: 0.5rem;
|
||||||
|
|
||||||
time {
|
time, .chapter {
|
||||||
color: var(--muted);
|
color: var(--muted);
|
||||||
font-size: 0.9rem;
|
font-size: 0.9rem;
|
||||||
|
}
|
||||||
|
|
||||||
|
.chapter {
|
||||||
|
min-width: 2rem;
|
||||||
|
}
|
||||||
|
|
||||||
|
time {
|
||||||
min-width: 6rem;
|
min-width: 6rem;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -17,21 +17,31 @@
|
||||||
{% else %}
|
{% else %}
|
||||||
{% set pages = section.pages %}
|
{% set pages = section.pages %}
|
||||||
{% endif %}
|
{% endif %}
|
||||||
|
{% if section.extra.use_chapter_sort %}
|
||||||
|
{% set pages = pages | sort(attribute="extra.chapter") %}
|
||||||
|
{% for page in pages %}
|
||||||
|
<li>
|
||||||
|
<span class="chapter">{{ page.extra.chapter }}</span>
|
||||||
|
<a href="{{ page.permalink }}">{{ page.title }}</a>
|
||||||
|
</li>
|
||||||
|
{% endfor %}
|
||||||
|
{% else %}
|
||||||
{% for page in pages %}
|
{% for page in pages %}
|
||||||
<li>
|
<li>
|
||||||
<time datetime="{{ page.date }}">{{ page.date | date(format="%Y-%m-%d") }}</time>
|
<time datetime="{{ page.date }}">{{ page.date | date(format="%Y-%m-%d") }}</time>
|
||||||
<a href="{{ page.permalink }}">{{ page.title }}</a>
|
<a href="{{ page.permalink }}">{{ page.title }}</a>
|
||||||
</li>
|
</li>
|
||||||
{% endfor %}
|
{% endfor %}
|
||||||
|
{% endif %}
|
||||||
</ul>
|
</ul>
|
||||||
|
|
||||||
{% if paginator %}
|
{% if paginator %}
|
||||||
<nav class="pagination">
|
<nav class="pagination">
|
||||||
{% if paginator.previous %}
|
{% if paginator.previous %}
|
||||||
<a href="{{ paginator.previous }}">← Newer</a>
|
<a href="{{ paginator.previous }}">← {% if section.extra.use_chapter_sort %}Previous{% else %}Newer{% endif %}</a>
|
||||||
{% endif %}
|
{% endif %}
|
||||||
{% if paginator.next %}
|
{% if paginator.next %}
|
||||||
<a href="{{ paginator.next }}">Older →</a>
|
<a href="{{ paginator.next }}">{% if section.extra.use_chapter_sort %}Next{% else %}Older{% endif %} →</a>
|
||||||
{% endif %}
|
{% endif %}
|
||||||
</nav>
|
</nav>
|
||||||
{% endif %}
|
{% endif %}
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue